Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLOS global public health ; 2(1), 2022.
Article in English | EuropePMC | ID: covidwho-2261167

ABSTRACT

Symptomatic testing programmes are crucial to the COVID-19 pandemic response. We sought to examine United Kingdom (UK) testing rates amongst individuals with test-qualifying symptoms, and factors associated with not testing. We analysed a cohort of untested symptomatic app users (N = 1,237), nested in the Zoe COVID Symptom Study (Zoe, N = 4,394,948);and symptomatic respondents who wanted, but did not have a test (N = 1,956), drawn from a University of Maryland survey administered to Facebook users (The Global COVID-19 Trends and Impact Survey [CTIS], N = 775,746). The proportion tested among individuals with incident test-qualifying symptoms rose from ~20% to ~75% from April to December 2020 in Zoe. Testing was lower with one vs more symptoms (72.9% vs 84.6% p<0.001), or short vs long symptom duration (69.9% vs 85.4% p<0.001). 40.4% of survey respondents did not identify all three test-qualifying symptoms. Symptom identification decreased for every decade older (OR = 0.908 [95% CI 0.883–0.933]). Amongst symptomatic UMD-CTIS respondents who wanted but did not have a test, not knowing where to go was the most cited factor (32.4%);this increased for each decade older (OR = 1.207 [1.129–1.292]) and for every 4-years fewer in education (OR = 0.685 [0.599–0.783]). Despite current UK messaging on COVID-19 testing, there is a knowledge gap about when and where to test, and this may be contributing to the ~25% testing gap. Risk factors, including older age and less education, highlight potential opportunities to tailor public health messages. The testing gap may be ever larger in countries that do not have extensive, free testing, as the UK does.

2.
Sci Rep ; 12(1): 10904, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1908282

ABSTRACT

The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≥ 7 days was either lower or unchanged. Illness duration ≥ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants.


Subject(s)
COVID-19 , Hepatitis D , Adult , COVID-19/epidemiology , Humans , Prospective Studies , Reinfection , SARS-CoV-2/genetics
3.
Lancet ; 399(10335): 1618-1624, 2022 04 23.
Article in English | MEDLINE | ID: covidwho-1867912

ABSTRACT

BACKGROUND: The SARS-CoV-2 variant of concern, omicron, appears to be less severe than delta. We aim to quantify the differences in symptom prevalence, risk of hospital admission, and symptom duration among the vaccinated population. METHODS: In this prospective longitudinal observational study, we collected data from participants who were self-reporting test results and symptoms in the ZOE COVID app (previously known as the COVID Symptoms Study App). Eligible participants were aged 16-99 years, based in the UK, with a body-mass index between 15 and 55 kg/m2, had received at least two doses of any SARS-CoV-2 vaccine, were symptomatic, and logged a positive symptomatic PCR or lateral flow result for SARS-CoV-2 during the study period. The primary outcome was the likelihood of developing a given symptom (of the 32 monitored in the app) or hospital admission within 7 days before or after the positive test in participants infected during omicron prevalence compared with those infected during delta prevalence. FINDINGS: Between June 1, 2021, and Jan 17, 2022, we identified 63 002 participants who tested positive for SARS-CoV-2 and reported symptoms in the ZOE app. These patients were matched 1:1 for age, sex, and vaccination dose, across two periods (June 1 to Nov 27, 2021, delta prevalent at >70%; n=4990, and Dec 20, 2021, to Jan 17, 2022, omicron prevalent at >70%; n=4990). Loss of smell was less common in participants infected during omicron prevalence than during delta prevalence (16·7% vs 52·7%, odds ratio [OR] 0·17; 95% CI 0·16-0·19, p<0·001). Sore throat was more common during omicron prevalence than during delta prevalence (70·5% vs 60·8%, 1·55; 1·43-1·69, p<0·001). There was a lower rate of hospital admission during omicron prevalence than during delta prevalence (1·9% vs 2·6%, OR 0·75; 95% CI 0·57-0·98, p=0·03). INTERPRETATION: The prevalence of symptoms that characterise an omicron infection differs from those of the delta SARS-CoV-2 variant, apparently with less involvement of the lower respiratory tract and reduced probability of hospital admission. Our data indicate a shorter period of illness and potentially of infectiousness which should impact work-health policies and public health advice. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, and Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Hospitals , Humans , Prevalence , Prospective Studies , SARS-CoV-2/genetics
4.
PLOS Glob Public Health ; 2(1): e0000028, 2022.
Article in English | MEDLINE | ID: covidwho-1854928

ABSTRACT

Symptomatic testing programmes are crucial to the COVID-19 pandemic response. We sought to examine United Kingdom (UK) testing rates amongst individuals with test-qualifying symptoms, and factors associated with not testing. We analysed a cohort of untested symptomatic app users (N = 1,237), nested in the Zoe COVID Symptom Study (Zoe, N = 4,394,948); and symptomatic respondents who wanted, but did not have a test (N = 1,956), drawn from a University of Maryland survey administered to Facebook users (The Global COVID-19 Trends and Impact Survey [CTIS], N = 775,746). The proportion tested among individuals with incident test-qualifying symptoms rose from ~20% to ~75% from April to December 2020 in Zoe. Testing was lower with one vs more symptoms (72.9% vs 84.6% p<0.001), or short vs long symptom duration (69.9% vs 85.4% p<0.001). 40.4% of survey respondents did not identify all three test-qualifying symptoms. Symptom identification decreased for every decade older (OR = 0.908 [95% CI 0.883-0.933]). Amongst symptomatic UMD-CTIS respondents who wanted but did not have a test, not knowing where to go was the most cited factor (32.4%); this increased for each decade older (OR = 1.207 [1.129-1.292]) and for every 4-years fewer in education (OR = 0.685 [0.599-0.783]). Despite current UK messaging on COVID-19 testing, there is a knowledge gap about when and where to test, and this may be contributing to the ~25% testing gap. Risk factors, including older age and less education, highlight potential opportunities to tailor public health messages. The testing gap may be ever larger in countries that do not have extensive, free testing, as the UK does.

5.
Lancet Infect Dis ; 22(7): 1002-1010, 2022 07.
Article in English | MEDLINE | ID: covidwho-1778523

ABSTRACT

BACKGROUND: With the surge of new SARS-CoV-2 variants, countries have begun offering COVID-19 vaccine booster doses to high-risk groups and, more recently, to the adult population in general. However, uncertainty remains over how long primary vaccination series remain effective, the ideal timing for booster doses, and the safety of heterologous booster regimens. We aimed to investigate COVID-19 primary vaccine series effectiveness and its waning, and the safety and effectiveness of booster doses, in a UK community setting. METHODS: We used SARS-CoV-2 positivity rates in individuals from a longitudinal, prospective, community-based study (ZOE COVID Study), in which data were self-reported through an app, to assess the effectiveness of three COVID-19 vaccines (ChAdOx1 nCov19 [Oxford-AstraZeneca], BNT162b2 [Pfizer-BioNtech], and mRNA1273 [Moderna]) against infection in the 8 months after completion of primary vaccination series. In individuals receiving boosters, we investigated vaccine effectiveness and reactogenicity, by assessing 16 self-reported systemic and localised side-effects. We used multivariate Poisson regression models adjusting for confounders to estimate vaccine effectiveness. FINDINGS: We included 620 793 participants who received two vaccine doses (204 731 [33·0%] received BNT162b2, 405 239 [65·3%] received ChAdOx1 nCoV-19, and 10 823 [1·7%] received mRNA-1273) and subsequently had a SARS-CoV-2 test result between May 23 (chosen to exclude the period of alpha [B.1.1.7] variant dominance) and Nov 23, 2021. 62 172 (10·0%) vaccinated individuals tested positive for SARS-CoV-2 and were compared with 40 345 unvaccinated controls (6726 [16·7%] of whom tested positive). Vaccine effectiveness waned after the second dose: at 5 months, BNT162b2 effectiveness was 82·1% (95% CI 81·3-82·9), ChAdOx1 nCoV-19 effectiveness was 75·7% (74·9-76·4), and mRNA-1273 effectiveness was 84·3% (81·2-86·9). Vaccine effectiveness decreased more among individuals aged 55 years or older and among those with comorbidities. 135 932 individuals aged 55 years or older received a booster (2123 [1·6%] of whom tested positive). Vaccine effectiveness for booster doses in 0-3 months after BNT162b2 primary vaccination was higher than 92·5%, and effectiveness for heterologous boosters after ChAdOx1 nCoV-19 was at least 88·8%. For the booster reactogenicity analysis, in 317 011 participants, the most common systemic symptom was fatigue (in 31 881 [10·1%] participants) and the most common local symptom was tenderness (in 187 767 [59·2%]). Systemic side-effects were more common for heterologous schedules (32 632 [17·9%] of 182 374) than for homologous schedules (17 707 [13·2%] of 134 637; odds ratio 1·5, 95% CI 1·5-1·6, p<0·0001). INTERPRETATION: After 5 months, vaccine effectiveness remained high among individuals younger than 55 years. Booster doses restore vaccine effectiveness. Adverse reactions after booster doses were similar to those after the second dose. Homologous booster schedules had fewer reported systemic side-effects than heterologous boosters. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, Medical Research Council.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunization, Secondary , Prospective Studies , SARS-CoV-2
6.
Lancet Infect Dis ; 21(7): 939-949, 2021 07.
Article in English | MEDLINE | ID: covidwho-1433943

ABSTRACT

BACKGROUND: The Pfizer-BioNTech (BNT162b2) and the Oxford-AstraZeneca (ChAdOx1 nCoV-19) COVID-19 vaccines have shown excellent safety and efficacy in phase 3 trials. We aimed to investigate the safety and effectiveness of these vaccines in a UK community setting. METHODS: In this prospective observational study, we examined the proportion and probability of self-reported systemic and local side-effects within 8 days of vaccination in individuals using the COVID Symptom Study app who received one or two doses of the BNT162b2 vaccine or one dose of the ChAdOx1 nCoV-19 vaccine. We also compared infection rates in a subset of vaccinated individuals subsequently tested for SARS-CoV-2 with PCR or lateral flow tests with infection rates in unvaccinated controls. All analyses were adjusted by age (≤55 years vs >55 years), sex, health-care worker status (binary variable), obesity (BMI <30 kg/m2vs ≥30 kg/m2), and comorbidities (binary variable, with or without comorbidities). FINDINGS: Between Dec 8, and March 10, 2021, 627 383 individuals reported being vaccinated with 655 590 doses: 282 103 received one dose of BNT162b2, of whom 28 207 received a second dose, and 345 280 received one dose of ChAdOx1 nCoV-19. Systemic side-effects were reported by 13·5% (38 155 of 282 103) of individuals after the first dose of BNT162b2, by 22·0% (6216 of 28 207) after the second dose of BNT162b2, and by 33·7% (116 473 of 345 280) after the first dose of ChAdOx1 nCoV-19. Local side-effects were reported by 71·9% (150 023 of 208 767) of individuals after the first dose of BNT162b2, by 68·5% (9025 of 13 179) after the second dose of BNT162b2, and by 58·7% (104 282 of 177 655) after the first dose of ChAdOx1 nCoV-19. Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. Local effects were similarly higher in individuals previously infected than in those without known past infection (1·4 times after the first dose of ChAdOx1 nCoV-19 and 1·2 times after the first dose of BNT162b2). 3106 of 103 622 vaccinated individuals and 50 340 of 464 356 unvaccinated controls tested positive for SARS-CoV-2 infection. Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49-68) for ChAdOx1 nCoV-19 and 69% (66-72) for BNT162b2 at 21-44 days and 72% (63-79) for BNT162b2 after 45-59 days. INTERPRETATION: Systemic and local side-effects after BNT162b2 and ChAdOx1 nCoV-19 vaccination occur at frequencies lower than reported in phase 3 trials. Both vaccines decrease the risk of SARS-CoV-2 infection after 12 days. FUNDING: ZOE Global, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, UK Medical Research Council, Wellcome Trust, UK Research and Innovation, American Gastroenterological Association.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Drug-Related Side Effects and Adverse Reactions/immunology , SARS-CoV-2/immunology , Vaccination/adverse effects , Female , Humans , Male , Middle Aged , Prospective Studies , Safety/statistics & numerical data , Self Report/statistics & numerical data , United Kingdom
7.
Gut ; 70(11): 2096-2104, 2021 11.
Article in English | MEDLINE | ID: covidwho-1398714

ABSTRACT

OBJECTIVE: Poor metabolic health and unhealthy lifestyle factors have been associated with risk and severity of COVID-19, but data for diet are lacking. We aimed to investigate the association of diet quality with risk and severity of COVID-19 and its interaction with socioeconomic deprivation. DESIGN: We used data from 592 571 participants of the smartphone-based COVID-19 Symptom Study. Diet information was collected for the prepandemic period using a short food frequency questionnaire, and diet quality was assessed using a healthful Plant-Based Diet Score, which emphasises healthy plant foods such as fruits or vegetables. Multivariable Cox models were fitted to calculate HRs and 95% CIs for COVID-19 risk and severity defined using a validated symptom-based algorithm or hospitalisation with oxygen support, respectively. RESULTS: Over 3 886 274 person-months of follow-up, 31 815 COVID-19 cases were documented. Compared with individuals in the lowest quartile of the diet score, high diet quality was associated with lower risk of COVID-19 (HR 0.91; 95% CI 0.88 to 0.94) and severe COVID-19 (HR 0.59; 95% CI 0.47 to 0.74). The joint association of low diet quality and increased deprivation on COVID-19 risk was higher than the sum of the risk associated with each factor alone (Pinteraction=0.005). The corresponding absolute excess rate per 10 000 person/months for lowest vs highest quartile of diet score was 22.5 (95% CI 18.8 to 26.3) among persons living in areas with low deprivation and 40.8 (95% CI 31.7 to 49.8) among persons living in areas with high deprivation. CONCLUSIONS: A diet characterised by healthy plant-based foods was associated with lower risk and severity of COVID-19. This association may be particularly evident among individuals living in areas with higher socioeconomic deprivation.


Subject(s)
COVID-19/etiology , Diet/adverse effects , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Diet Surveys , Diet, Healthy , Female , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Severity of Illness Index , Socioeconomic Factors , Surveys and Questionnaires , Young Adult
8.
EClinicalMedicine ; 38: 101029, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1313065

ABSTRACT

BACKGROUND: There is limited prior investigation of the combined influence of personal and community-level socioeconomic factors on racial/ethnic disparities in individual risk of coronavirus disease 2019 (COVID-19). METHODS: We performed a cross-sectional analysis nested within a prospective cohort of 2,102,364 participants from March 29, 2020 in the United States (US) and March 24, 2020 in the United Kingdom (UK) through December 02, 2020 via the COVID Symptom Study smartphone application. We examined the contribution of community-level deprivation using the Neighborhood Deprivation Index (NDI) and the Index of Multiple Deprivation (IMD) to observe racial/ethnic disparities in COVID-19 incidence. ClinicalTrials.gov registration: NCT04331509. FINDINGS: Compared with non-Hispanic White participants, the risk for a positive COVID-19 test was increased in the US for non-Hispanic Black (multivariable-adjusted odds ratio [OR], 1.32; 95% confidence interval [CI], 1.18-1.47) and Hispanic participants (OR, 1.42; 95% CI, 1.33-1.52) and in the UK for Black (OR, 1.17; 95% CI, 1.02-1.34), South Asian (OR, 1.39; 95% CI, 1.30-1.49), and Middle Eastern participants (OR, 1.38; 95% CI, 1.18-1.61). This elevated risk was associated with living in more deprived communities according to the NDI/IMD. After accounting for downstream mediators of COVID-19 risk, community-level deprivation still mediated 16.6% and 7.7% of the excess risk in Black compared to White participants in the US and the UK, respectively. INTERPRETATION: Our results illustrate the critical role of social determinants of health in the disproportionate COVID-19 risk experienced by racial and ethnic minorities.

9.
Lancet Public Health ; 6(5): e335-e345, 2021 05.
Article in English | MEDLINE | ID: covidwho-1180163

ABSTRACT

BACKGROUND: The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. METHODS: We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. FINDINGS: From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6-0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56-0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38-0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02-1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. INTERPRETATION: The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. FUNDING: Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society.


Subject(s)
COVID-19/virology , Reinfection/virology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/complications , COVID-19/epidemiology , COVID-19/transmission , Female , Humans , Male , Middle Aged , Reinfection/epidemiology , United Kingdom/epidemiology , Young Adult
10.
Thorax ; 76(7): 723-725, 2021 07.
Article in English | MEDLINE | ID: covidwho-999303

ABSTRACT

Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the COVID-19 Symptom Study app, we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of 'urban hotspots'. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors.


Subject(s)
COVID-19/epidemiology , Mobile Applications , Pneumonia, Viral/epidemiology , Self Report , Adult , Female , Humans , Male , Mass Screening/methods , Middle Aged , Pneumonia, Viral/virology , Prevalence , Risk Factors , United Kingdom/epidemiology
11.
medRxiv ; 2020 May 25.
Article in English | MEDLINE | ID: covidwho-829263

ABSTRACT

BACKGROUND: Data for frontline healthcare workers (HCWs) and risk of SARS-CoV-2 infection are limited and whether personal protective equipment (PPE) mitigates this risk is unknown. We evaluated risk for COVID-19 among frontline HCWs compared to the general community and the influence of PPE. METHODS: We performed a prospective cohort study of the general community, including frontline HCWs, who reported information through the COVID Symptom Study smartphone application beginning on March 24 (United Kingdom, U.K.) and March 29 (United States, U.S.) through April 23, 2020. We used Cox proportional hazards modeling to estimate multivariate-adjusted hazard ratios (aHRs) of a positive COVID-19 test. FINDINGS: Among 2,035,395 community individuals and 99,795 frontline HCWs, we documented 5,545 incident reports of a positive COVID-19 test over 34,435,272 person-days. Compared with the general community, frontline HCWs had an aHR of 11·6 (95% CI: 10·9 to 12·3) for reporting a positive test. The corresponding aHR was 3·40 (95% CI: 3·37 to 3·43) using an inverse probability weighted Cox model adjusting for the likelihood of receiving a test. A symptom-based classifier of predicted COVID-19 yielded similar risk estimates. Compared with HCWs reporting adequate PPE, the aHRs for reporting a positive test were 1·46 (95% CI: 1·21 to 1·76) for those reporting PPE reuse and 1·31 (95% CI: 1·10 to 1·56) for reporting inadequate PPE. Compared with HCWs reporting adequate PPE who did not care for COVID-19 patients, HCWs caring for patients with documented COVID-19 had aHRs for a positive test of 4·83 (95% CI: 3·99 to 5·85) if they had adequate PPE, 5·06 (95% CI: 3·90 to 6·57) for reused PPE, and 5·91 (95% CI: 4·53 to 7·71) for inadequate PPE. INTERPRETATION: Frontline HCWs had a significantly increased risk of COVID-19 infection, highest among HCWs who reused PPE or had inadequate access to PPE. However, adequate supplies of PPE did not completely mitigate high-risk exposures. FUNDING: Zoe Global Ltd., Wellcome Trust, EPSRC, NIHR, UK Research and Innovation, Alzheimer's Society, NIH, NIOSH, Massachusetts Consortium on Pathogen Readiness.

12.
Lancet Public Health ; 5(9): e475-e483, 2020 09.
Article in English | MEDLINE | ID: covidwho-706478

ABSTRACT

BACKGROUND: Data for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk. METHODS: We did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov, NCT04331509. FINDINGS: Among 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93-12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37-3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors. INTERPRETATION: In the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed. FUNDING: Zoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.


Subject(s)
Coronavirus Infections/transmission , Health Personnel/statistics & numerical data , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Personal Protective Equipment/statistics & numerical data , Pneumonia, Viral/transmission , Adult , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Humans , Male , Middle Aged , Mobile Applications , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Prospective Studies , Risk Assessment , Self Report , United Kingdom/epidemiology , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL